If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+35x-30=0
a = 25; b = 35; c = -30;
Δ = b2-4ac
Δ = 352-4·25·(-30)
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-65}{2*25}=\frac{-100}{50} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+65}{2*25}=\frac{30}{50} =3/5 $
| 4x-52=-8 | | (x+4)(x-2)=4x | | -14x=-16 | | 0.100xY=250 | | x^2=-7x-3/2 | | (2x+10)+(3x+10)+(4x+10)=120 | | D=15+8d/11 | | 12d-85=0 | | P=16+8d/11 | | 4+7x-x^2=-x/2 | | (7/3)=(x/13) | | (A-2)x2=360 | | x=(7/3)*(13/1) | | (A-2)x2=40 | | x/13=(7/3) | | x+0.08x=33000 | | 5x/6-12=7 | | 32=2(x-2)-6x | | 24=18+g | | 3x*7=7x | | -6/5u=-24 | | m2-13=36 | | 8y2=0 | | 1/(3x-2)=4 | | (5+x)÷2=9 | | 11m2+14=47 | | x/3-x/2=6 | | -2x+30*2=60 | | x=7x-1=13 | | 4x-8/2x=0 | | A=x/3x=2 | | 17x6=2 |